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A Novel Botulinum Neurotoxin, Previously
Reported as Serotype H, Has a Hybrid-Like
Structure With Regions of Similarity to the
Structures of Serotypes A and F and Is
Neutralized With Serotype A Antitoxin
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Botulism is a potentially fatal paralytic disease caused by the action of botulinum neurotoxin (BoNT) on nerve
cells. There are 7 known serotypes (A–G) of BoNT and up to 40 genetic variants. Clostridium botulinum strain
IBCA10-7060 was recently reported to produce BoNT serotype B (BoNT/B) and a novel BoNT, designated as
BoNT/H. The BoNT gene (bont) sequence of BoNT/H was compared to known bont sequences. Genetic analysis
suggested that BoNT/H has a hybrid-like structure containing regions of similarity to the structures of BoNT/
A1 and BoNT/F5. This novel BoNT was serologically characterized by the mouse neutralization assay and a
neuronal cell–based assay. The toxic effects of this hybrid-like BoNT were completely eliminated by existing
serotype A antitoxins, including those contained in multivalent therapeutic antitoxin products that are the
mainstay of human botulism treatment.
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Botulism is a rare, potentially lethal, neuroparalytic dis-
ease that manifests naturally in humans in 3 primary
forms: foodborne botulism, intestinal colonization
botulism (infant botulism and, rarely, adult intestinal
colonization botulism), and wound botulism [1]. The
reported occurrence of each botulism form varies
worldwide. Botulism is a nationally reportable disease
in the United States; the Centers for Disease Control
and Prevention (CDC) is responsible for compiling re-
ports of laboratory-confirmed cases, through its Na-
tional Botulism Surveillance System. Approximately
120 human cases are reported annually in the United
States; roughly 70% of these are infant botulism cases.

Botulinum antitoxin is the only specific pharmaco-
logical treatment for botulism and is the cornerstone
of clinical management. In the United States, non–
infant botulism is treated with Heptavalent Botulism
Antitoxin (BAT), an equine-based heptavalent product
that treats all known serotypes of botulinum toxin
(BoNT/A–G) [2, 3]. Infant botulism is typically treated
by Botulism Immune Globulin Intravenous (human),
marketed as BabyBIG (Baxter Biosciences, Thousand
Oaks, California), which is licensed for BoNT/A and
BoNT/B only [4]. Improvements in medical manage-
ment practices since the 1950s have reduced overall bot-
ulism mortality from approximately 60% to only 5%–

10% [5]. Therapeutic antitoxin provides a protective
benefit in patients with botulism by reducing both mor-
tality due to and the long-term consequences of this
paralytic disease [6]. A retrospective review of food-
borne botulism cases showed that patients who received
antitoxin were more likely (46% vs 10%) to survive. Pa-
tients receiving antitoxin early in the course of their illness
appeared to recover more quickly, with a hospitalization
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duration of 10 days, compared with 41 and 56 days for late and
no receipt of antitoxin, respectively. A double-blind study of
BabyBIG in infant botulism demonstrated that antitoxin
administration decreases hospital stay and improves clinical
outcome [4].

The 7 recognized serotypes of BoNT were originally defined
by neutralization of toxicity by specific polyclonal antibodies.
However, limited information is available about the relationship
between the structure and function of the BoNT molecule [7].
On its most basic level, BoNT is a 150-kDa protein that, when
activated, is converted to a dichain (composed of a light chain
[LC] and heavy chain [HC]) with 3 domains weakly held to-
gether by a peptide belt, a disulfide bond, and surface charges.
The LC domain is responsible for the toxin’s enzymatic activity,
which results in the paralytic symptoms of botulism. The HCN

(translocation domain) facilitates the translocation of the LC
into the neuronal cytosol. The HCC (binding domain) is re-
sponsible for docking the toxin to the exterior of the neuronal
cell membrane. However, molecular characterization of the
gene contained within diverse strains has expanded the knowl-
edge of BoNT diversity beyond what could be achieved through
classical microbiological methods alone.

At least 40 unique BoNTs, often called subtypes, have been
identified by DNA sequencing; some have an impact on
BoNT function [7]. For instance, molecular studies have provid-
ed evidence for cross-reactive serological observations of a sin-
gle BoNT containing structural components of BoNT serotypes
C and D [8–11]. Sequences of BoNT/F were found to be partic-
ularly variable [12]. BoNT/F functional diversity was demon-
strated when it was discovered that one variant (BoNT/F5)
cleaved VAMP-2 (a synaptic vesicle membrane protein involved
in acetylcholine release) at L54, while all other BoNT/F variants
(F1-F4 and F6-F7) cleaved VAMP-2 at Q58 [13]. Currently,
there is not sufficient experimental evidence to correlate all ob-
served variances in the BoNT gene (bont) with functional
changes in the toxin [7]. However, it is clear that availability
of these genetic data facilitates our understanding of BoNT di-
versity and assists in the interpretation of functional differences
observed through serological methods.

Recently, researchers from the California Department of
Public Health (CDPH) described the identification of a novel
bivalent strain (ie, a strain that produces 2 BoNTs), C. botuli-
num IBCA10-7060, which was isolated from a naturally occur-
ring case of infant botulism [14]. While rare, other bivalent
C. botulinum strains have been reported that produce combina-
tions of BoNT A, B, and F. Many of these strains produce one
of the toxins in excess of the other, and this characteristic is
denoted by specifying the BoNT subtype with the greatest
level of expression first (eg, “Af” denotes a bivalent strain in
which BoNT/A is produced in greater quantity than BoNT/F).
CDPH researchers reported that strain IBCA10-7060 produced
BoNT/B in excess (24:1) of the novel BoNT. The novel toxin was

described by the CDPH researchers as a newly defined serotype
H toxin that could not be neutralized by existing antibody prod-
ucts [14]. However, the designation of BoNT/H has been ques-
tioned, and additional studies were recommended to confirm its
identity [7, 15].

Both the traditional mouse neutralization assay (MNA) and an
invitroneuronal cell–based (NCB)assaywereused to independent-
ly evaluate the first new BoNT serotype reported in >40 years.
Serological results were analyzed in the context of the newly re-
leased DNA sequence posted in GenBank (accession number,
JSCF01000000) [16]. Our serological data are consistent with the
genetic evidence that the novel BoNT produced by strain IBCA10-
7060 has a hybrid-like structure of BoNT/A1 and BoNT/F5.

MATERIALS AND METHODS

Gene Analyses
Neurotoxin gene sequences were retrieved from GenBank,
aligned using ClustalW, and compared using SimPlot [17]. Pre-
dicted amino acid sequences were aligned in a pairwise fashion,
using EMBOSS Needle (available at: http://www.ebi.ac.uk/
Tools/psa/emboss_needle/).

Preparation of Toxin and Estimation of Toxin Ratio
Cultures were prepared and toxin produced at 2 different insti-
tutions, the CDC and the University of Wisconsin–Madison
(UW-Madison). Toxicity levels (measured as the dose per mil-
liliter that is required to kill 50% of recipients [LD50]) were de-
termined in both laboratories by mouse bioassay end point
analysis [18, 19].

At the CDC, strain IBCA10-7060 was streaked for isolation
on egg yolk agar and incubated anaerobically at 35°C for 2
days. A single colony was selected, assigned the designation of
CDC69016 (per CDC laboratory policy), and inoculated into
cooked meat glucose starch medium (Remel, Lenexa, KS) for
overnight growth at 35°C [18, 20]. This culture (volume, 300
µL) was inoculated into 150 mL of trypticase peptone glucose
yeast extract medium (Remel, Lenexa, Kansas) with 15 mL of
1% sterile trypsin (added to ensure complete BoNT activation)
and incubated anaerobically for 5 days at 30°C. After incuba-
tion, the toxin underwent acid precipitation [21]. The precipitat-
ed toxin was concentrated using an Amicon Ultra-15 Centrifugal
Filter Unit with a Ultracel 50-kDa membrane (EMD Millipore,
Billerica, Massachusetts) and is referred to hereafter as the
“CDC toxin” (282 800 LD50/mL).

At the UW-Madison, strain CDC69016 (derived from strain
IBCA10-7060 at the CDC) was grown for 5 days at 37°C in toxin
production medium (2% NZ Case TT, 1% yeast extract, and
0.5% glucose) [21]. The culture was centrifuged at 12 000g
for 10 minutes. The culture supernatant was adjusted to pH
6.2 and incubated with 5 µg/mL of TPCK-treated trypsin
(Worthington, Lakewood, New Jersey) at 37°C for 60 minutes
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to ensure complete BoNT activation. Soybean trypsin inhibitor
(Sigma-Aldrich, St. Louis, Missouri) was added to the culture su-
pernatant to yield a final concentration of 10 µg/mL. The trypsi-
nized culture supernatant, referred to hereafter as “UW toxin”
(22 400 LD50/mL), was diluted 1:10 in GelPhos buffer (30 mM
sodium phosphate and 0.2% gelatin [pH 6.3]) for storage.

The ratio of the 2 toxins was determined in both laboratories by
mouse bioassay end point titration with and without serotype B
antitoxin. Additionally, the ratio was estimated on the basis of En-
dopep mass spectrometry, as previously described [22]. Culture
supernatant from FDA115, which expresses BoNT/B2, was used as
a control for the estimate of theVAMP-2 cleavage product produced
by both the known BoNT/B and the novel toxin in CDC69016.

MNA
CDC toxin was diluted to either 100 or 2000 LD50/mL in gelatin-
buffered saline (GBS) [18]. Antitoxins were diluted in GBS and
0.25 mL of each dilution was mixed with 1 mL of the respective
toxin dilution. The toxin-antitoxin mixtures were incubated at am-
bient temperature for 30 minutes and then mice were exposed by
intraperitoneal (IP) injection (0.5 mL/mouse). UW toxin was

diluted to 200 or 2000 LD50/mL with GelPhos buffer. Antitoxins
were combined with 0.45 mL diluted UW toxin and incubated at
ambient temperature for 1 hour then injected IP intomice (0.5 mL/
mouse). Mice were observed for signs of botulism for at least the
standard MNA endpoint of 4 days [18]. All animal studies were
conducted according to protocols approved by either the CDC or
UW-Madison Institutional Animal Care and Use Committee.

CDC diagnostic antitoxin types A, B, and F, and trivalent an-
titoxin types A, B, and E had potency values from 2 to 10 inter-
national units (IU)/mL. Equine monovalent research antitoxins
(Auburn University, Auburn, Alabama) had the following po-
tency: type A, 2623 IU/mL; type B, 691 IU/mL; type C, 370 IU/
mL; type D, ≥200 IU/mL; type E, 2378 IU/mL; type F, 996 IU/
mL; and type G, 196 IU/mL. Rabbit polyclonal antitoxins were
raised in the laboratory of one of the authors (E. A. J.; UW-
Madison) against BoNT/A1 or BoNT/B1 toxoid. Both antibody
stocks were estimated to contain 100 IU/mL. Additionally, 2
commercially produced therapeutic products were used: (1) Biva-
lent Botulism Antitoxin against types A and B (Equine; bivalen-
tAB) (Sanofi Pasteur, Canada), with stated antitoxin titers of
≥600 IU/mL for both serotypes; and (2) Heptavalent Botulism

Figure 1. A and C, Nucleotide similarity plots (derived from SimPlot [7]) are shown for the novel bont/FA (A) and the previously recognized bont/CD (C).
The percentage similarity was generated using a 200-bp window and a 20-bp step. A, bont/A1 (green) and bont/F5 (red) are shown with bont/FA (individual
nucleotide data were obtained from GenBank accession numbers AM412317 [for bont/A1], GU213212 [for bont/F5], and JSCF00000000 [for bont/FA]). B,
bont/D (green) and bont/C (red) are shown with bont/CD (individual nucleotide data were obtained from GenBank accession numbers JENR01000128 [for
bont/D], AB200358 [for bont/C], and AB200360 [for bont/CD]). The gene regions encoding the 3 domains (light chain [LC], N-terminal heavy chain [HCN], and
C-terminal heavy chain [HCC]) are indicated by dotted lines. B and D, The predicted amino acid identity of botulinum neurotoxin (BoNT) LC, HCN, and HCC
domains are for the hybrid toxins BoNT F/A (B) and BoNT C/D (D). Domains sharing ≥80% amino acid identity in pairwise alignments between the as-
sociated hybrid toxins and the comparison toxins are shaded. The percentage amino acid identity of the most similar domains is also indicated. The struc-
ture of the novel toxin contained in strain IBCA10-7060 (BoNT F/A) has significant similarity to the LC domain of BoNT/F5 (A) and the HCC domain of BoNT/
A1 (B). For comparison, the structure of another hybrid toxin (BoNT C/D) is also shown (C and D).
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Antitoxin against types A, B, C, D, E, F, and G (Equine; BAT;
Emergent BioSolutions, Rockville, Maryland), with stated antitoxin
titers of≥300 IU/mL for each serotype. The AB product (discon-
tinued in 2010) was held in the CDC laboratory at 4°C ± 2°. BAT
(the current therapeutic) was stored under pharmaceutical prod-
uct conditions by the CDC Drug Services Office before use.

NCB Assay
The cell-based assay using hiPSC-derived neurons (Cellular Dy-
namics) was performed as previously described [23]. A second
UW toxin (UW toxin 2) was prepared as described above; the tox-
icity of UW toxin 2 was 6 × 105 LD50/mL. UW toxin 2 was com-
bined with BAT in 100 µL of culture medium and incubated for 1
hour at 37°C. The toxin-antitoxin mixtures were then added to
cells (100 µL/well) and incubated for 24 hours at 37°C in 5% CO2.
Cell lysates were analyzed by Western blot for VAMP2 cleavage, as
previously described [24, 25]. Images were obtained using Phos-
phaGlo reagent (KPL) and a Foto/Analyst FX imaging system.

RESULTS

Genetic Analysis of the Novel bont Gene
The novel toxin gene contains regions of similarity to both bont/
A1and bont/F5 (Figure 1A). Comparative analysis of the nucleo-
tide gene sequence demonstrated that the region corresponding
to the HCC domain was nearly identical (>90%) to bont/A1,
whereas the region corresponding to the LC was similar to bont/
F5 (Figure 1B). This hybrid-like structure is similar to that de-
scribed for certain serotype C and D strains (Figure 1C and 1D).
However, in contrast to the C/D hybrids, the HCN domain of this
hybrid is less similar (ie, <80% similarity) to the HCN of either
bont/A1 or bont/F5. Independent verification of the novel BoNT
gene sequence in strain CDC69016 showed 100% alignment with
the GenBank sequence of strain IBCA10-7060 (data not shown).

MNA Findings
The toxic effect of either the CDC toxin or UW toxin in mice
was eliminated for up to 21 days when monovalent antitoxin A

and antitoxin B were added together to the test sample (Table 1).
The results were equivalent, even though different toxin prepa-
rations and different antitoxins were used. No other single an-
titoxin or combination of antitoxins reduced the effects of the
toxin. With one exception, BAT provided complete neutraliza-
tion of the CDC toxin at 2000 LD50/mL; partial protection was
observed when the product was diluted (Table 2). The cause of
death in the one exception was uncertain because symptoms
were not observed in this animal before it died. Complete neu-
tralization at 2000 LD50/mL was also observed with the bivalent
AB product. BAT protected animals at lower test dose at both
CDC and UW-Madison. CDC diagnostic trivalent ABE also

Table 1. Mouse Neutralization Assay, Using Research Antitoxins

Toxin Controla A B B +A B+C B+D B+ E B+ F B +G

CDC toxinb 0/6 0/6 0/6 6/6c 0/6 0/6 0/6 0/6 0/6

UW toxind 0/5 0/5 0/5 5/5 NT NT NT NT NT

Data denote the no. of animals alive at day 4/no. tested.

Abbreviations: CDC, Centers for Disease Control and Prevention; IU, international units; LD50, dose required to kill 50% of recipients; NT, not tested; UW, University
of Wisconsin–Madison.
a Toxin-only control; no antitoxin was added.
b Tested at 2000 LD50/mL. Monovalent antitoxin potency: A, 2623 IU/mL; B, 691 IU/mL; C, 370 IU/mL; D, not available; E, 2378 IU/mL; F, 996 IU/mL; and G, 196 IU/
mL. Results are from 3 independent experiments.
c Animals were observed for 21 days; no botulism symptoms developed.
d Tested at 2000 LD50/mL. A and B antitoxin potency: 100 IU/mL. Equivalent results were obtained when tested at 200 LD50/mL.

Table 2. Mouse Neutralization Assay, Using Nonresearch
Antitoxins

Toxin Controla

Therapeutic CDC Diagnostic

BATb Bivalent ABc Trivalentd ABe

CDC toxinf 0/10 7/8g 2/2 NT NT

CDC toxinh 0/18 10/10i NT 4/4 0/4j

UW toxink 0/4 4/4 NT NT NT

Data denote the no. of animals alive at day 4/no. tested.

Abbreviations: CDC, Centers for Disease Control and Prevention; LD50,
dose required to kill 50% of recipients; NT, not tested; UW, University of
Wisconsin–Madison.
a Toxin-only control; no antitoxin was added.
b Heptavalent botulism antitoxin (BAT), was produced by Emergent Bio-
Solutions (Rockville, Maryland). Different unexpired lots were used at the
CDC and UW-Madison.
c Bivalent botulism antitoxin against types A and B (Bivalent AB) was produced
by Sanofi Pasteur, Canada.
d CDC diagnostic antitoxin, trivalent (A, B, and E).
e CDC diagnostic antitoxins A and B.
f Tested at 2000 LD50/mL.
g One animal was asymptomatic until day 4. Partial protection (ie, delay of
symptom onset for 3 days) was achieved even when BAT was diluted 1:32.
h Tested at 100 LD50/mL.
i Partial protection (ie, delay of symptom onset for 4 days) was achieved even
when BAT was diluted 1:160.
j Partial protection (ie, delay of symptom onset for 2 days) was achieved.
k Tested at 2000 LD50/mL.
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provided complete neutralization of CDC toxin at 100 LD50/
mL; partial protection was observed at 2000 LD50/mL (Table 2).

NCB Assay Findings
A reduction in VAMP2 was observed when UW toxin was
added to the cells without BAT (control), indicating VAMP2
cleavage. The addition of BAT protected against VAMP2 c-
leavage, indicating the presence of neutralizing antibodies
(Figure 2).

Ratio of BoNT/B to Novel BoNT and Highest Effective Dilution of
Type A Antitoxin
The ratio of BoNT/B to the novel toxin in the UW toxin was
estimated to be approximately 1:1 by the observation that the
end point titer in the presence of serotype B antitoxin was
one half the titer in the absence of antitoxin (Table 3). Mice re-
ceiving toxin plus excess serotype B antitoxin but not serotype
A antitoxin exhibited symptoms consistent with botulism, es-
tablishing that the novel toxin in IBCA10-7060 can cause bot-
ulism. Equivalent MNA results were obtained with CDC toxin
(data not shown). A ratio of 4:1 was obtained with CDC toxin
by the Endopep mass spectrometry quantitative assay (data not
shown). Dilutions of ≤1:400 (≥7 IU/ mL) of the type A mono-
valent research antitoxin A antitoxin still provided complete
neutralization against the toxic effects of an estimated level of
1000 LD50/mL of the novel toxin, while ≤3.5 IU /mL did not
(Table 4).

DISCUSSION

Our studies show that strain CDC69016 (derived from CDPH
strain IBCA10-7060) produces 2 toxins (BoNT/B and a novel
BoNT) in approximately equal proportions and that the toxicity
in animals can be completely neutralized using a combination of
serotype B and A antitoxins. These results were demonstrated in 2
independent laboratories, using different antitoxins. No other
combination of antitoxins protected animals, indicating that the
apparent neutralization with serotypes A and B antitoxins was
specific for the novel BoNT and BoNT/B, respectively. Addition-
ally, BAT (containing antitoxins for all 7 known BoNT serotypes)
eliminated the toxic effects of both BoNTs, as demonstrated in
both the traditional MNA and an in vitro NCB assay, indicating
that current therapeutic treatment products would likely be effec-
tive in individuals exposed to this hybrid toxin.

Serotype identification is critical to the laboratory confirma-
tion of human botulism; however, DNA sequencing provides

Figure 2. Neutralization of University of Wisconsin–Madison (UW)
toxin 2 with heptavalent botulism antitoxin (BAT) in a neuronal cell–
based assay. The indicated amounts of extract were incubated without
(top) or with 2 µL (bottom) of heptavalent botulism antitoxin, in 100 µL
of culture medium and incubated for 1 hour at 37°C. The toxin/BAT mix-
tures were then added to hiPSC-derived neurons (100 µL/well) and incubat-
ed for 24 hours at 37°C in 5% CO2. Cell lysates were prepared in 50 µL of
lithium dodecyl sulfate sample buffer (Life Technologies) and analyzed by
Western blot for levels of VAMP2, syntaxin, and SNAP-25, as previously
described [24, 25]. VAMP-2 remains intact when the culture supernatant
is pretreated with BAT, demonstrating a protective capacity.

Table 3. Estimation of Ratio of Botulinum Neurotoxin Subtype B
(BoNT/B) to Novel BoNT in the University of Wisconsin–Madison
(UW) Toxin

Antitoxin
Treatment

Culture Dilution

1:1000 1:2000 1:4000 1:8000 1:16 000 1:32 000

Nonea 0/4 0/4 0/4 0/4 4/4 4/4

Bb 0/4 0/4 0/4 4/4 4/4 . . .
B + Ac 4/4 . . . . . . . . . . . . . . .

Data denote the no. of animals alive at day 4/no. tested. No symptoms of
botulism were observed in any animals.

Abbreviations: IU, international units; LD50, dose required to kill 50% of
recipients.
a Serial dilution of culture alone. The toxicity level was 22 400 LD50/mL.
b A total of 3 IU of type B antitoxin was added to each dilution. Both toxins
present at equivalent level of approximately 11 200 LD50/mL.
c The addition of 10 IU of type A antitoxin provided complete neutralization,
demonstrating that the addition of 3 IU of type B antitoxin eliminated the
toxic effects of BoNT/B in all dilutions.

Table 4. Neutralization Capacity of Monovalent Type A Antitoxin
for Novel Botulinum Neurotoxin (BoNT)

Toxin

Dilution of Antitoxin Type Aa

1:100 1:200 1:400 1:800 1:1600

CDC toxinb 4/4 4/4 4/4c 0/4 0/4

Data denote the no. of animals alive at day 4/no. tested.

Abbreviations: CDC, Centers for Disease Control and Prevention; LD50, dose
required to kill 50% of recipients.
a Research monovalent type A antitoxin (2623 IU per mL).
b On the basis of a 1:1 ratio of B to novel BoNT, the estimated test dose of 1000
LD50/mL of novel BoNT was used in the presence of 8 IU/mL of type B
antitoxin.
c Addition of monovalent type F antitoxin did not alter the minimum dilution of
type A antitoxin that protected animals.
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critical evidence aiding in the interpretations of serological ob-
servations of neutralization and cross-reactive strain variations.
Historically, investigators were forced to speculate on the causes
of differences in serological observations, which sometimes led
to misinterpretations [26]. For example, the BoNT from one
strain of C. botulinum was initially considered to be an atypical
variant of serotype B because a 1000-fold excess of antitoxin
was required to neutralize its effects [27]. However, this inter-
pretation later was determined to be incorrect when this strain
(657) was shown to produce both serotype B and A (ie, C. bot-
ulinum Ba) [28]. DNA sequencing may have prevented the ini-
tial misidentification of this dual-toxin–producing strain. More
recently, sequence data provided structural evidence of hybrid-
like structures, which explained the observed cross-reactivity
between some C. botulinum serotype C and D strains [10, 11].
The molecular study of the novel toxin of strain IBCA10-7060
showed that bont contained areas of similarity with known
toxin serotypes A and F (specifically F5) [29]. Our DNA anal-
ysis is in agreement with the previous study. However, we
conclude that the DNA sequence of the novel gene appears to
represent a hybrid-like structure between known bont subtypes
A1 and F5 similar to those described between BoNT serotypes
C and D. The CDPH authors designated the novel toxin as se-
rotype H because of their serological observation that single or
combinations of monovalent diagnostic antitoxins could not
neutralize the effects of the novel BoNT [14]. However, our
studies show that this novel toxin can be neutralized by existing
serotype A antitoxins. Our DNA analysis shows that the bind-
ing domain (HCC) of the novel toxin gene is nearly identical
with that of bont/A1. The protective capacity of antibody direct-
ed toward the HC (the neuronal cell–binding domain) of BoNT
is well established through work with monoclonal antibodies,
and the HC is currently being pursued for a next-generation
vaccine [30–32]. Therefore, our observed neutralization of the
novel toxin with serotype A antitoxin was not surprising.

The neutralization assay has been used for decades to estab-
lish and identify BoNT. In 1919, the first 2 known BoNT sero-
types (A and B) were defined through serological analysis;
subsequent BoNT serotypes were similarly discovered through
production of BoNT-specific antibody [33].While standardized
reagents were not necessarily required for BoNT identification,
there was a need for reference antitoxins to facilitate interlabor-
atory and lot-to-lot potency comparisons as investigators began
developing therapeutic products (antitoxin and toxin). As a re-
sult, the World Health Organization (WHO) international an-
titoxin reference standards were established [34, 35]. The WHO
standards were produced with BoNT from specific strains and,
somewhat arbitrarily, were assigned a potency (expressed in IU)
on the basis of a designated toxicity level (1 IU neutralized
10 000 LD50 for BoNT serotypes A–D and F, and 1 IU neutral-
ized 1000 LD50 for BoNT serotype E) of fully characterized
BoNTs derived from these identical strains. These reference

antitoxins provided a standard approach for describing the
neutralization capacity of therapeutic antitoxin products. The
neutralization capacity of research and diagnostic antitoxin
products are similarly assigned a potency but with far less strin-
gency then required for therapeutic products. As more strains
were studied following outbreak investigations, variations were
observed in the neutralization capacity of research and diagnos-
tic antitoxins toward BoNT derived from nonreference strains
of the identical serotype; these were described as intratypic se-
rological variants [27, 36, 37]. Similarly, distinct antigenic prop-
erties have been described for BoNT/A1, BoNT/A2, and BoNT/
A3 subtypes (named as a result of DNA sequencing), using pan-
els of monoclonal antibodies [38, 39].Although it was suggested
that an upper limit be imposed on the amount of antitoxin re-
quired to neutralize a particular BoNT from a particular strain,
compared with the amount of reference toxin, to help identify
new serotypes, none were ever defined [36]. So the stated poten-
cy of the WHO reference standards, therapeutic antitoxin prod-
ucts, and diagnostic reagents only applies to the neutralization
capacity of the antitoxin toward a very specific BoNT prepara-
tion; similar capacity toward nonreference BoNT (eg, a different
BoNT subtype within a serotype) cannot be assumed. On the
basis of our DNA analyses indicating that the novel toxin in
IBCA10-7060 was only approximately 33% similar to serotype
A, our studies, not unexpectedly, showed that a higher level of
serotype A antitoxin was required to neutralize the effects of the
novel toxin, compared with BoNT/A1. Since full protection
from the effects of the novel toxin was achieved using serotype
A antitoxin alone, our serological observations would be con-
sistent, based on historical precedent, with the designation of
an atypical serological BoNT/A variant. The DNA evidence
shows that this serological variant has a hybrid structure.
Recently, this BoNT hybrid was confirmed to have the same
VAMP-2 cleavage site as F5 [40].

Actual potency (IU/mL) of an antitoxin towards an individ-
ual BoNT can only be quantified under highly specific experi-
mental conditions using both predefined reference standards
for both toxin and antitoxin [34, 41]. Purified and characterized
BoNT is required for both the reference and test toxins. Addi-
tionally, changes in assay conditions, such as reference toxin,
toxin test dose, buffers, number of animals, or even reference
antitoxin, affect final laboratory-specific potency results [42].
The stringent conditions required to define the potency of an-
titoxin to a specific toxin cannot be found in a typical research
or clinical laboratory. Additionally, values assigned to available
distributed antitoxin products (other than recognized stan-
dards, such as those of the WHO), including CDC diagnostic
reagents, must be assumed to be approximate because these
were never designed to be quantitative primary reference stan-
dards [20]. So, assessment of antitoxin potency toward the
novel BoNT in the absence of a validated test that uses fully
qualified materials is speculative. However, we did observe
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differences in antitoxin neutralization capacity toward the novel
BoNT, compared with what would be expected with reference
toxins. At least 2 IU of monovalent serotype A research antitox-
in was required to neutralize an estimated 1000 LD50 of the
novel toxin, suggesting an approximately 20-fold increase in an-
titoxin requirement, compared with the amount expected to
neutralize reference BoNT/A1. An even higher amount (ap-
proximately 200-fold) of the CDC diagnostic reagent was re-
quired (only the approximately 50 LD50/mL of the novel toxin
was neutralized by approximately 1 IU) than expected, com-
pared with BoNT/A1. Additionally, a ≥500-fold increase in
BAT was required, compared with BoNT/A1 (data not shown).
So, it is clear that this novel toxin is distinct from reference
BoNT/A1. However, even these relative serological observations
will need to be confirmed when purified BoNT F/A becomes
available.

There are no published studies on the protective benefit of
BAT. However, the level of available type A and B antitoxin
in BAT is nearly equivalent to that in the previous licensed bi-
valent AB product (approximately 7500 IU), so the protective
benefit is likely similar. This level of antitoxin can neutralize
25 × 103 LD50/mL of BoNT/A1 circulating in an adult (plasma
volume, 3 L). While there are isolated reports of higher values,
the CDC reported in 1984 that the highest level of BoNT detect-
ed in any patient was 32 LD50/mL [43]. So, the available anti-
toxin in a single vial is ≥800 times more than needed for the
treatment of most botulism cases. While our study data do
not allow us to predict with accuracy the absolute potency of
BAT against the novel toxin in strain IBCA10-7060, the protec-
tion we observed in both the MNA and the NCB assay suggests
that this therapeutic product would effectively neutralize this
toxin in exposed individuals.

In summary, our studies on strain CDC69016, derived from
strain IBCA10-7060, confirm the presence of 2 toxins: serotype
B and a novel toxin, BoNT. BoNT is a serotype A variant con-
sisting of a hybrid-like structure between bont A1 and F5, which
can be neutralized with existing serotype A antitoxin. Further
studies, using purified toxin, are necessary to assign the appro-
priate nomenclature to this novel BoNT and to further charac-
terize its risks.
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